Research Projects

Underactuated Attitude Control of Small Satellites

Underactuated Attitude Control of Small Satellites

Developing algorithms and hardware for underactuated control of small satellites, mainly through trajectory optimization techniques of magnetorquer attitude manipulation.

Read more »
Dynamic Games Solver

Dynamic Games Solver

Developing a general solver for dynamic games aimed at identifying Nash equilibrium strategies specifically tailored to robotics applications.

Read more »
Distributed Trajectory Optimization

Distributed Trajectory Optimization

Scalable Cooperative Transport of Cable-Suspended Loads with UAVs using Distributed Trajectory Optimization

Read more »
Fast Solution of Optimal Control Problems With L1 Cost

Fast Solution of Optimal Control Problems With L1 Cost

Developing a fast, low memory footprint algorithm to solve minimum-fuel problems with possible implementation onboard a CubeSat for embedded trajectory optimization.

Read more »
PyCubed

PyCubed

An open-source, radiation-tested reliable cubesat framework programmable entirely in python.

Read more »
Fast Trajectory Optimization

Fast Trajectory Optimization

Building new solvers for trajectory optimization problems that are fast, accurate, and numerically robust.

Read more »
Control and Motion Planning with Contact Interactions

Control and Motion Planning with Contact Interactions

Controlling systems that make and break contact with objects and the environment. Applications to robotic locomotion and manipulation.

Robust Motion Planning

Robust Motion Planning

Making things get where they’re supposed to go when we don’t know exactly how they move and what disturbance forces might be pushing on them.

Read more »
KickSat Project

Tiny low-cost satellites made on printed circuit boards

Read more »